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Entrainment of an eddy at the edge of a jet 
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An inviscjd two-dimensional eddy (with maximum circulation f and uniform 
vorticity c2 > 0) ,  surrounded by irrotational fluidjs initially located near the edge of 
a jet, on the other side of which the vorticity [,( < &) increases. The interaction 
causes the eddy to move towards the edge and into the shear flow. Eventually the 
eddy and the ambient (irrotational) fluid are surrounded by the jet fluid. An average 
entrainment velocity-i? computed for a variety of relevant conditions, and found to 
scale mainly with (&)$. The approximate proportionality constant is somewhat 
larger than the measured value for three-dimensional (turbulent) jets, suggesting 
that the two-dimensional mechanism may be qualitatively relevant. The results may 
also be generalized to  study the role of mesoscale eddies in the lateral entrainment 
of ambient fluid into oceanic jets. 

1. Introduction 
Entrainment occurs in many different ways and on many different scales in the 

laboratory, ocean, and atmosphere. The low-Reynolds-number jet issuing from a 
small nozzle into a fluid of the same density is one example. In  this case the molecular 
viscous forces increase the velocity and vorticity of the ambient fluid, thereby 
incorporating i t  in an enhanced downstream transport. This requires a transverse 
inflow of irrotational fluid into the jet, thereby forcing a larger scale ‘recirculation’ 
gyre (extending to the boundary walls of the system). 

At very large Reynolds number the entrainment mechanism is intimately 
connected with the evolution of the large-scale eddies generated by the jet. The 
sequence of events leading up to  turbulent entrainment can be seen in Rockwell & 
Niccolls’ (1972) photographs of hydrogen bubbles in a planar jet. At a small distance 
downstream from the nozzle, amplifying Kelvin-Helmholtz waves appear in the thin 
shear layer separating the thicker irrotational jet core from the ambient irrotational 
fluid, in agreement with the results of a piecewise-uniform vorticity model (Pozrikidis 
& Higdon 1985) , and also with finite-Reynolds-number numerical calculations 
(Corcos 1981). These also show the subsequent merging of the adjacent vortex cores, 
which is the next stage in the transition to  turbulence, in either the jet problem or 
the free-shear-layer problem (Roshko 1981 ; Hussain 1981). 

Although the Kelvin-Helmholtz instability and core merger process leads to the 
‘engulfment ’ of irrotational fluid in the modified mean vorticity layer, none of that 
fluid is transported across the actual boundaries of the vortical domains (i.e. the 
cores). The mixing of such large-scale structures with different vorticities occurs 
further downstream in the jet, after the onset of a three-dimensional instability of 
the vortex cores. At this stage mean vorticity exists throughout the jet, and mature 
large-scale eddies may be generated (on one side of the jet, or the other) by vortex 
stretching, local instability, and mergers. During its short lifetime this mature 
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FIQURE 1. Schematic diagram. (a) The assumed initial ( t  = 0) state a t  the outer edge (2 = 1) of a 
two-dimensional shear layer, in which the non-dimensional vorticity is C1 = 1 .  Immediately above 
(y > Ll(x, t ) )  this interface there is a semi-infinite irrotational layer, and embedded in this is an 
eddy having non-dimensional area np2 and vorticity 5, > 5,. This eddy induces an upward 
(downward) velocity v, on I = 1 at x greater (less) than zero. (b) The change in L, gives rise to 
k'vorticity anomalies' in the area between y = L, and y = 0, and the velocity induced by these 
anomalies causes the centroid of the eddy (2 = 2) to move downwards into the shear layer. The 
x = 0 origin of the coordinate system moves with the x-velocity of the centroid in all figures. (c) At 
tl > t ,  the eddy and surrounding irrotational fluid are entrained in the jet. H i s  the shortest distance 
between the point s and the 2 = 1 branch that has wound counterclockwise around the eddy (see 
text). 

eddy is advected downstream, where it interacts with the somewhat smaller vorticity 
of the local jet. 

Starting at this point we propose to compute the subsequent eddy-shear flow 
interaction using a highly simplified inviscid, two-dimenlsional, and piecewise- 
uniform vorticity model. We will assume a uniform vorticity 1;, underneath the upper 
edge (designated 1 = 1) of our jet (figure la) ,  and above 1 = 1 there is a semi-infinite 
irrotational region. Embedded in this is an eddy (whose perimeter is designated by 



Entrainment of an eddy at the edge of a jet 345 

1 = 2) of area nb2, vorticity 5, > > 0, and circulation f = xi2[,. The centroid of the 
eddy is initially at  a distance y(0) = R above the undisturbed interface (y = 0) of the 
jet, whose axis (of symmetry) is at y = --B. The 6 = 00 case considered first 
corresponds to an eddy interacting mainly with the near edge of th,e jet, and one 
aspect of$he fi2ite-B case is considered subsequently. We shall use 5;’ as the time 
unit and h = (r/c1)i as the length unit in the subsequent non-dimensionalization, so 
that the corresponding vorticity of the shear layer (figure 1 a )  is 5, = 1, and 5, > 1 is 
the non-dimensions: e$dy vorticity. Then the eddy has non-dimensional area np2, 
circulation 7cp2c2 = r / h 2 l l  = 1,  and g(0) = R. The interfacial height of 1, is y = L,(x, 
t ) ,  and y = L,(x, t )  denote the ordinate of 1,. If the eddy vorticity exceeds that of the 
shear flow, and if R is small, then we will show that y( t )  decreases as the upward 
velocities (figure 1 ( b )  induced on the downstream side of 1 = 1 by the eddy cause a 
wedge of fluid to wrap counterclockwise around the eddy. The decisive stage 
(figure 1 c )  for entrainment occurs when the downstream branch of the 1 = 1 interface 
comes into close contact with the upstream branch, thereby irreversibly surrounding 
both the eddy and the adjacent irrotational fluid inside a ‘new’ interface. 

From the total amount of fluid incorporated into the shear flow, and from the 
elapsed time, an entrainment velocity V, is defined and computed (94) for various 
values of the parameters. The approximately constant value of P, / ( f [ , $  implies that 
the entrainment velocity dependsAmore on the eddy circulation than on the eddy 
vorticity (as long as this exceeds 5,). This is significant in attempting ($7) to relate 
the mechanism to entrainment in a turbulent jet because the maximum circulation 
of an eddy is a more appropriate measure of its strength than any single value of the 
vorticity in the three-dimensional structure. 

Brief mention may also be made of another variety of large-Reynolds-number 
entrainment, one which is essentially two-dimensional insofar as potential vorticity 
is conserved. The mass (and energy) flux in a quasi-permanent oceanic jet like the 
Gulf Stream increases downstream from the Straits of Florida (Richardson 1985). 
The entrainment is accompanied by large and weak recirculating gyres, embedded in 
which are small-scale and strong mesoscale eddies (these are probably not generated 
locally). The following barotropic results suggest that the interaction of these eddies 
with the jet may assist the merging of the gyre water by overcoming any potential 
vorticity barriers existing at the jet’s edge. For further discussion of eddy-shear flow 
interaction in the ocean see Ikeda & Lygre (1989) and Smith & Bird (1989). 

” A  

2. Formulation 
The following calculations are based on the method of contour dynamics, Zabusky, 

Hughes & Rogers (1979). Two well-known problems are implicit in figure 1 (a ) ,  one 
of which, obtained by removing the eddy (i.e. c2 = 0) (Stern 1985; Dritschel 1988), 
concerns the free evolution of a finite-amplitude trough (1 = 1)  on the interface of a 
shear layer. If the initial amplitude of the trough is large the downstream phase 
propagation will be followed by nonlinear steepening and ‘ wavebreaking ’ of the 
forward face of the trough. Then L,(x, t )  becomes multi-valued, and as the straining 
effect of the shear flow continues a long thin 1 = 1 filament extends downstream. The 
irrotational fluid drawn into the trough in the wavebreaking phase is eventually 
squeezed back into the 5 = 0 domain, so that very little of the latter is entrained 
Pullin 1981). We shall show that when a strong eddy (& > 5,) is present the situation 
is entirely different. 

The second familiar problem (Melander, Overman & Zabusky 1986) is obtained by 
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FIGURE 2 (a-c). For caption see facing page. 
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FIQURE 2. The evolution of the interfaces for {2 = 2, R = -0.11, p = 0.40 = B. The endpoints of the 
numerical calculation extend beyond x = f 5.65. To aid identification here and elsewhere the 1 = 
2 curve has been dashed. (a) t = 1, ( b )  t = 3. Note the closing ‘gap’ between 1 = 1 and the right-hand 
side of 1 = 2. (c) t = 5. Note the wedge of 6 = 1 fluid winding around the top of the eddy. (d )  t = 
7. Entrainment is virtually complete aa the wedge of { = 1 fluid approaches the upstream branch 
(I = 1) of the same fluid. (e) A large-scale view at t = 7. There are 395 points on I = 1 and 185 points 
on 1 = 2. A thin filament emerging from the upper left-hand side of 1 = 2 is nearly coincident with 
a segment of I = 1. 

I2 FLM 228 
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removing the shear layer (i.e. set Cl = 0 in figure 1 a )  and by considering the evolution 
of an (irregular) round eddy (1 = 2). The algorithm use$ by Stern (1985) in a variant 
of this problem is merged with the one used for the c2 = 0 problem, in the present 
study. A preliminary version of the eddy-shear flow interaction using a point vortex 
was given by Stern & Flier1 (1987), but that study was not directed towards the 
entrainment problem, and no rates were computed. 

The well-known piecewise-uniform vorticity model (summarized below for 
convenience) allows us to express the (2, y)-components of velocity (u, v)  as contour 
integrals on the 1 = 1 , 2  boundaries. The contribution of all the vortex elements inside 
1 = 2 is given by (2.1)-(2.2), and (2.3)-(2.4a,b) give the contribution due to 1 = 1. 
Equation (2.4b) gives the velocity associated with the undisturbed interface, while 
(2.3), ( 2 . 4 ~ )  give the velocities associated with the vortex anomalies lying between 
L,(x, t )  and the y = 0 axis. As indicated by (in figure 1 b )  these anomalies have 
strength + 1 where L, > y > 0, strength - 1 where 0 > y > L,, and they are 
responsible for all of the y-component of velocity produced by the disturbed shear 
flow. These equations are 

( 2 . 4 ~ )  

(2.4b) 

where the contour integrals are taken clockwise for 1 = 2, and from f = - co to f = 
+ co in (2.3). The Lagrangian integro-differential equations for a point [x,(t), L,(x,, t ) ]  
on interface 1 = 1 ,2  are then given by 

dL,/dt = "1(",,L,,t)+v,(x,,L,,t) = v(x,,L,,t), 
dxJdt = u1(xl, L,, t )  + u2(~19 L,, t )  = ~ ( x c ,  Lc, t ) .  

(2.5) 
(2.6) 

The (Lagrangian) boundary conditions on 1 = 1 are dL,/dt = 0 and dx/dt = 0 a t  

The numerical solution was obtained in terms of N,(t) x N2(t) Lagrangian points 
distributed in a truncated x-interval centred around the centroid of the translating 
eddy, with endpoints or interior points added or deleted as necessary. The integrals 
(taken along the contours) are approximated by the trapezoidal rule, with an 
indentation a t  the logarithmic singularity, whose contribution is included by means 
of an analytical approximation. The velocities are then used to a.dvance (x,, L,) one 
time step using a second-order Runge-Kutta approximation. The long-time errors 
were monitored by recording the area 8, bounded by 1 = 2, and the integrated L,, 
denoted by S,. 

When D = co the 'far-field' (Ixll + co) velocities are sensitive to the sum of the 
eddy circulation and the integrated vorticity anomaly. If this sum vanishes the 

xl=fOO. 
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t B z 4 4 
0 -0.11 0 -0.96 0.50 
0.5 -0.11 0.12 -0.96 0.50 
1.0 -0.11 0.23 -0.96 0.50 
2.0 -0.12 0.45 -0.95 0.50 
3.0 -0.16 0.68 -0.95 0.50 
4.0 -0.20 0.93 -0.95 0.50 
5.0 -0.24 1.22 -0.96 0.50 
6.0 -0.28 1.54 -0.97 0.50 
7.0 -0.32 1.88 -0.98 0.50 

TABLE 1 .  The centroid @ , g )  of the eddy, and the areas bounded by 1 = 1,2. 6, = 2, R = -0.11, 
p = 0.40, Q = -0.79, B = 0.40. See figure 2. 

velocities decay ‘rapidly ’ (x-’), as is desirable for the truncated calculation, and 
therefore the initial condition used for the semi-infinite shear layer was taken as 

dzL,(x, 0) = - 1. (2.7) 
This is satisfied bv 

which is a reasonable representation of the disturbed jet edge when it first encounters 
a mature eddy. It is equally desirable to have the same kind of balance (yielding 
small far-field velocities) at all t ,  and this was realized for the strong interactions 
which occur when R is small. For the finite-D model ( § 5 ) ,  the far-field velocities are 
always small to order x-’. But in the weak interactions for D = 00 the initial balance 
(2.7) could not be maintained in the truncated x-interval (for reasons discussed in the 
Appendix). 

The troublesome endpoint and truncation issues in the isolated eddy model are 
usually eliminated by employing a spatially periodic model, and the results of two 
such calculations will be mentioned for the sake of comparison. But the ‘timewise’ 
evolution of a periodic model is unsatisfactory in many physical problems (like 
entrainment) where the actual evolution is ‘spacewise ’ (so called). Furthermore, the 
isolated eddy is a better representation of a large-Reynolds-number entraining event 
since velocity realizations exhibit small spatial coherence. 

3. The round eddy interacting with an unbounded (D = co) shear layer 
Because of (2.7) it is easy to see from figure 1 (a)  that if R is sufficiently small, then 

the positive vortices inside 1 = 2,  rather than the negative vorticity anomalies above 
I = 1 ,  will determine the sign of the initial v (as indicated by the vertical wiggly 
arrows) on I = 1. This was confirmed by the computed initial velocities for c2 = 2, 
R = -0 .11  (figure 2).  The centroid of I = 2 (figure 1)  moves downstream owing to the 
horizontal velocities induced by the negative vorticity anomalies above 1 = 1,  and 
the origin (x = 0) of our coordinate system in all that follows is constrained to move 
with the centroid. 

These initial values of v tend to produce smaller L, upstream of the eddy than 
downstream (figure 1 b ) ,  thereby leading to an asymmetrical distribution of vorticity 
anomalies, with more negative ones upstream of the centroid and more positive ones 
downstream. On the other hand, the (free-wave) tendency for the 1 = 1 trough to 

12-2 
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FIQURE 3. The & = 3 run. R = -0.092, p = 0.32, B = 0.49. (a) t = 7,  (a) t = 10. The horizontally 
compressed scale shows the extent of the filamentation, and also the well-behaved interface near 
the endpoints. 
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propagate downstream leads to a transfer of negative 1 = 1 anomalies from the 
upstream side of 1 = 2 to the downstream side. If the latter tendency dominated then 
the associated vortex anomalies would induce an upward velocity of the centroid, 
whereas a downward velocity would occur for the former tendency. Both of these 
effects can be seen in figure 2 (a ) ,  and for small t they tend to cancel, as shown by the 
constancy of g( t )  in table 1.  But later on (figure 2 b )  we see that the advective and 
straining effect of the shear flow carries negative vortex anomalies away from the 
downstream side of the eddy, and figure 2 ( b )  clearly shows the dominance of the 
negative vorticity anomalies on the upstream side of the strong eddy. These cause 
the centroid to move downward, as confirmed by table 1. 

As the eddy descends into the shear layer the a(y) term (2.4b) causes the 
downstream speed (diz/dt) of the centroid to increase, and the same is true for the 
descending particles at  the same y on the upstream side of 1 = 1. But the speed 
decreases for the ascending particles at  the same y on the downstream side of 1 = 1. 
These differential velocities cause the width of the gap between 1 = 2 and 1 = 1 to be 
smaller on the downstream side than on the upstream side (figure 2 b ) .  Consequently, 
the eddy circulation is able to force more irrotational fluid downwards through the 
larger gap than it can force upwards through the smaller gap, so that irrotational 
fluid accumulates and is trapped under the descending eddy. 

It is easy to understand the anticlockwise winding (figure 2c) of a yedge of 6 = 1 
fluid. This would also occur (as a passive kinematical effect) even if c, = 0, but for 
finite 6, the positive vorticity anomaly of the wedge (in addition to that of the 
negative vorticity anomaly) has a crucial dynamical effect in causing the eddy to 
descend. 

Figures 2 ( d )  and 2(e )  show the entrainment phase, in which this wedge or 
downstream branch of 1 = 1 makes close contact with the upstream branch of 1 = 1, 
thereby surrounding both the eddy and a mass of ambient (6 = 0) fluid by shear-flow 
fluid (g = 1 ) .  At this stage an essentially multi-connected 1 = 1 curve is produced, 
even though mathematically complete contact of the branches cannot occur. To all 
intents and purposes there is a net transport of mass across a (‘new’) edge of the 
shear layer formed by ‘cutting’ the interface at the contact point. From an ensemble 
of such events a time-average transverse (‘entrainment ’) velocity at  the edge of a jet, 
or at  its boundary with the irrotational region, will be computed. 

Qualitatively similar results (figure 3 and table 2) are obtained when c2 is 
multiplied by when p is multiplied by (:)$, when B is multiplied by (i)h, and when 
the x-interval of integration is increased to reduce endpoint errors caused by this 
stronger eddy. 

In both of these runs R has a small negative value, but by reducing c2 (figure 4) 
we must increase the radius p,  and this requires an increased R to avoid contour 
intersections at  t = 0. The velocities induced on 1 = 1 are therefore decreased, and 
this leads to a much longer time for complete entrainment. But in this interval more 
irrotational fluid can be subducted, and we shall show ($4) that the entrainment 
velocity is not reduced much. Two of the thinnest filaments in figure 4 ( t  = 18) have 
reappeared even though their (similar) precursors (at t = 14) had been removed by 
‘ contour surgery ’ to prevent tangling of nearly coincident branches. This surgery 
was done by inspection, after ascertaining that the area and circulation of the deleted 
filament was three orders of magnitude smaller than the eddy. Tables 1 and 2 for the 
strong interaction case show that S, and S, are approximately conserved (so that 
mass is conserved in the truncated interval), but table 3 shows that S ,  changes by 
20% in this ‘weak’ interaction case (relatively large R and small f ) .  This change in 
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0’75 t-----l 

t 9 z 8, 8 2  

0 -0.09 0 -0.97 0.33 
1 -0.10 0.21 -0.97 0.33 
2 -0.12 0.42 -0.96 0.33 
4 -0.21 0.91 -0.95 0.33 
5 -0.27 1.21 -0.95 0.33 
6 -0.32 1.56 -0.96 0.33 
7 -0.37 1.94 -0.96 0.33 
8 -0.41 2.36 -0.98 0.33 
9 -0.45 2.82 -1.00 0.33 

10 0.47 3.25 -1.00 0.33 
TABLE 2. = 3, R = -0.092, p = 0.32, Q = -0.65, B = 0.49. See figure 3. 

S ,  is due to  a cumulative endpoint v error, as discussed in the Appendix. To confirm 
this c2 = 1.5 calculation, we repeated it (not shown) using a periodic (z-wavelength 
= 12) domain of eddies, employing the well-known (e.g. Pozrikidis &, Higdon 1985 
periodic Green’s function. S ,  was then conserved ( f 1 .5%) ,  and otherwise there were 
insignificant differences (2 %) compared to the computed quantities listed (table 4, 
row 2) for the isolated eddy. 

For an even weaker interaction (table 4, first row) with c2 = 1 the isolated eddy 
was not entrained, but i t  merely ‘tears ’ a very thin filament away from the shear 
layer. The c2 = 1 calculation was also repeated in a periodic domain using a slightly 
different initial condition (& = 0) ,  but retaining the same minimum initial separation 
between 1 = 1 and 1 = 2. The initial value of g(0) = 0.77 decreased to  a minimum 
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t !l 1 8, sz 
0 0.10 0 -0.98 0.67 
2 0.11 0.34 -0.98 0.67 
4 0.10 0.65 -0.96 0.67 
6 0.06 0.97 -0.94 0.67 
8 0.02 1.35 -0.91 0.67 

10 -0.02 1.77 -0.88 0.67 
12 -0.05 2.22 -0.85 0.67 
14 -0.07 2.67 -0.81 0.67 
16 -0.08 3.14 -0.81 0.67 
18 -0.10 3.64 -0.78 0.67 
20 -0.14 4.16 -0.79 0.67 

TABLE 3. 5, = 1.5, R = 0.098, p = 0.46, Q = - 0.69, B = 0.46. See figure 4. The non-constancy 
of S,  is discussed in the Appendix. 

R 
0.41 
0.098 

-0.11 
- 0.092 
-0.1 1 
-0.16 
-0.082 
-0.11 
-0.11 

0.28 

0.28 

0.56 

0.12 

R - Q  
0.97 
0.79 
0.68 
0.56 
0.68 
0.97 
0.49 
0.68 
0.68 
0.28 

0.28 

0.56 

0.68 

D 
co 
00 

00 

co 
co 
co 
a3 

1.13 
0.85 
0.85 

0.60 

0.85 

0.85 

t 

22 
18 
7 

10 
8 
9 
9 
9 
9 
9 

9 

24 

21 

4) 
0 
1.63 
0.89 
1 .oo 
0.89 
0.90 
0.89 
0.90 
0.88 
0.89 

0.87 

2.17 

1.44 

v*/ (F&)t 
0 
0.091 
0.13 
0.10 
0.11 
0.10 
0.098 
0.10 
0.097 
0.098 

0.095 

0.090 

0.070 

! l ( t )  
0.32 

-0.10 
-0.32 
-0.47 
-0.42 
-0.56 
-0.41 
-0.38 
-0.34 
-0.25 

-0.13 

0.073 

-0.079 
TABLE 4. Summary of entrainment results for a round eddy (finite 5,) and_ for a point vortex 
(6 = 00). a(t) is the total entrained area at time t (non-dimensional units) and V, is the entrainment 
velocity (dimensional units). The second column is the initial distance of the centre of the vortex 
from the underlying interface. 

g( 18) = 0.49, and then increased, thereby verifying that the f;, = 1 eddy is clearly not 
entrained. The main effect of such a weak eddy is to force a finite L,(x,  t ) ,  which then 
evolves like a free wave, with wavebreaking and the formation of a very thin filament 
of irrotational fluid. 

In the other limiting case, cz/ll = co (equivalent to t l + O ) ,  the centroid will also 
not move since the dynamically passive 1 = 1 interface is merely wound around the 
eddy. If anything, the interface is ‘entrained’ by the eddy, and not the other way. 

4. Computing the rate of entrainment 
Entrainment rates cannot be measured ‘instantaneously ’ but require time (or 

ensemble) averages over events originating when strong eddies come in close contact 
with the jet’s edge, and ending when the eddy becomes (almost) completely 
surrounded. The quantification of this is as follows. 
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FIGURE 5. The I = 1 interface at t = 12 when a point vortex (unit circulation) replaces the round 
eddy. R = -0.11, Q = -0.79. The point vortex is located at x = 0, y = -0.52. The maximum in 
(4.1) occurs at t = 8. 

Let s denote the arclength measured along 1 = 1 (figure l c )  from some fixed point 
far upstream on 1 = 1 to any other point, and let H ( s )  denote the shortest 
(perpendicular) distance from the latter point to that branch of 1 = 1 which has 
wound counterclockwise around the eddy from the downstream side. Let e+O 
denote a preassigned small distance (e.g. the Lagrangian point separation), and let 
s*(t) denote the smallest s for which H(s )  < e whenever such an s exists. Then the line 
segment H(s,) and the two 1 = 1 branches which it connects form a closed curve 
bounding an area a(€, t ) ,  part of which contains irrotational fluid, and the remainder 
(7cp2) contains 6, fluid. The existence of a limit for a (as s+O) is strongly suggested 
by the results for the 5, = 3, 2, 1.5 runs. But the final a is only approached 
asymptotically as time increases to infinity, and in order to define a mean 
entrainment rate we compute the time t a t  which 

Max ( 4 6 ,  t ) l t )  (4.1) 

occurs, (this quantity also probably has an E + O  limit). 
The procedure used to calculate (4.1) can be illustrated by referring to the C2 = 1.5 

run a t  t = 18, when entrainment appeared to be near completion. At one of the 
interfacial points (s) we found H = 0.085 and a = 1.63, and a t  a neighbouring s the 
values were H = 0.033, a = 1.61. By adopting this e = H = 0.033 we found a = 1.65 
a t  t = 20, indicating that a increases slowly with t ,  and that the maximum in (4.1) 
occurs a t  t = 182  1. The values of a( t )  obtained in this way for all the runs are listed 
in table 4. 
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In  order to determine the relative importance of c, and p,  similar (and simpler) 
contour dynamical calculations were also made for runs in which the round eddy was 
replaced by a point vortex (as in Stern & Flier1 1987) having the same circulation 
(namely unity). Figure 5 shows the evolution of the shear-layer interface when all the 
initial parameters (except 6 , p )  are the same as in figure 2. Considering the 
arbitrariness and uncertainty in determining t (equation (4.1)), we conclude (table 4, 
rows 3 and 5) that  a and t are roughly the same in the two c%ses, implying that the 
circulation T i s  more important than the individual values of c, and @. Table 4 also 
lists the results from other poin!-vortex calculations. 

The“tota1 dimensional area ah2 entrained across the shear layer interface in the 
time tc;l can be s,et equal to, a? average velocity p* acting across a distance equal to 
the scale length A ,  i.e. f*(tcl)h = a,  and this defines an ‘entrainment velocity’: 

v* = a / t ( f&$ ,  

whose non-dimensional value (a/ t )  is also listed in table 4. 

5. A jet of finite width 
A real jet with finite half-width D will have vorticity disturbances on both sides, 

but we hypothesize that the interaction of the eddy with the nearest half of the jet 
is most important. Some support for this will be supplied by using a rigid boundary 
condition 

v(x, -D,  t )  = 0 (5.1) 

at the nominal jet axis. This is formally equivalent to considering a symmetric jet 
(piecewise-uniform vorticity), and the ‘symmetrical entrainment ’ of equal and 
opposite (point) vortices placed at equal distances from an axis at y = -D. This 
artifice eliminates the linear instability mechanism, and merely requires the 
introduction of image vortices into the previous contour dynamical equations. Note 
that these images ensure rapidly decreasing (x?) far-field velocities under all 
conditions, thereby allowing a greater range of initial conditions to be considered 
with greater confidence. The program for this case was tested by comparing its 
results with a liner analytical theory (small f )  similar to the one for D = co given in 
the Appendix. 

The initial parameters in the run for D = 1.13 (table 4) have the same values as 
those in figure 5. Essentially equal non-dimensional entrainment velocities occur for 
these two runs, and approximate equality was also obtain9d for D = 0.85 (table 4). 
Thus we conclude that in our range of calculations v*/(Tf[,)i is not sensitive to the 
distance of the jet axis from its edge. 

When R is increased from - 0.11 to + 0.12 while keeping (R - &) a t  the same value 
as in the previous run (D = 0.85), the time required to complete entrainment (the last 
row in table 4) is more than doubled, but the non-dimensional entrainment velocity 
is only 25% smaller. 

Although the initial L,(x,O) < 0 used in all the preceding runs appears to be a 
reasonable representation of the initial state of a disturbed shear layer in close 
contact with an eddy, this initial condition is admittedly arbitrary and adjustable. 
It therefore seemed desirable to reduce the number of such adjustable parameters by 
setting Ll(x, 0) = 0. Figure 6 shows the result for R = 0.28 and D = 0.6. 

A question of accuracy may arise concerning the closely spaced spiral windings or 
filaments (e.g. figure 6), and therefore some of the calculations were repeated using 
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half the time step. The only noticeable difference was that the innermost filament on 
the left-hand side of the vortex (figure 6) was displaced one filament width to the 
right. Moreover, the calculations were continued, without computational instability, 
for a short time beyond the cutoff t (in (4.1)). 

6. On the momentum flux of the mature entraining eddy 
From two-dimensional kinematic consideration we know that the vorticity flux v[ 

integrated between x = & co equals the y-derivative of the horizontally integrated 
momentum flux (-uv). When this relation is multiplied by y and then integrated we 
get 

rmJ:Ddxdyvu -m = [Jyvcdo, (6.1) 

where d a  = dxdy. For the point-vortex model of the previous section there are two 
contributions to the last integral, one of which, 

is due to the point vortex of unit circulation a t  g( t ) .  The second contribution comes 
from the [ = 1 vortices inside a closed material curve consisting of1 = 1, y = - D ,  and 
supplemented by two joining segments inserted a t  z = f co. (The latter move with 
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the local laminar velocity field a(y) a t  infinity.) The second contribution is obtained 
by letting d a  in (6.1) be a material area element, so that d/dt(da) = 0. Since w = 
dy/dt it then follows that the shear-layer contribution to (6.1) is 

dx[L:(x, t)  - ( -D)’ ]  = -- L:(x, t) dx 2 dt 6dt --03 

and therefore 

dxdyvu = (6.3) 

For simplicity consider those runs in table 4 for which L(x,O) = 0). As the point 
vortex descends, $ ( t )  decreases, the horizontal integral of L, remains at zero, but the 
horizontal integral of L: becomes negative. This is due to the predominance of those 
L, values underneath the descending vortex, as is apparent in figure 6, and as has 
been verified. Therefore integration of (6.3) from t = 0 to the entrainment time yields 

J d t l + / y D d x d y w  < 0, 

which implies that the entraining vortex transfers momentum up the mean gradient 
of a. 

Of course, a larger down-gradient momentum flux might have been produced in 
the process by which the eddy was generated (prior to t = 0 and the entrainment 
phase). Both of these flux types might occur a t  different times in the following 
modification of the classical Kelvin-Helmholtz problem. Consider a laminar and 
semi-infinite lower layer (c = 1) separated from a semi-infinite irrotational upper 
layer by a thin intermediate layer of vorticity 5 = 2. Inflexional instability will also 
occur in this non-symmetrical Kelvin-Helmholtz problem, and we expect that the 
finite-amplitude evolution will also lead to the mid-layer vorticity accumulating into 
‘cores ’. During this eddy growth stage down-gradient momentum flux must occur, 
but it ceases as the eddy cores become fully developed. At this latter state we expect 
that the finite-amplitude evolution will interact with the 6 = 1 vorticity of the semi- 
infinite lower layer in much the same way as in figure 1, i.e. the eddy cores will 
descend further into the [ =  1 shear layer, accompanied by a (small) up-gradient 
momentum flux, until the entrainment phase ends. This model seems to be simpler 
and more fundamental than the one considered here, but we have chosen to leave 
open the mechanism by which the mature eddy is generated. 

7. Conclusion 
A strong interaction of the outer edge of a jet with an eddy occurs when iis 

maximum circulation f divided by its area is larger than the shear layer vorticity el, 
%nd whep the initial distance R of the eddy from the edge is somewhat smaller than 
A = (f/c,$. The entrainment of the eddy and its surrounding irrotational fluid 
(figure 2) culminates in the formation of an essentially multi-connected ( I  = 1) 
interface. The ‘pinching-off’ process results in the formation of a ‘new’ edge of the 
shear layer, across which there has been a mean entrainment velocity (table 4) 

v* = (0.1 1 f 0.02) ( f & ) i .  

This accounts for all of the (6 += 1) fluid that has been incorporated (figure Be) inside 
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the g =  1 fluid, starting from an assumed initial state. The parametric range 
considered in obtaining (7.1) although far from complete, is believed to be relevant 
to  the effect produced a t  the edge of a turbulent jet by a strong eddy, the latter 
having been geper3ted upstream and earlier. The range includes neither extremely 
large values of c2/cl, for which the shear flow is dynamically passive, nor small values 
(< l) ,  for which the eddy is not entrained. 

Wygnanski & Fiedler (1969) measured non-dimensional entrainment velocities 
u / U ,  = 0.03 in a turbulent planar jet, where v is the local time-average transverse 
velocity near the edge of the irrotational region, and U,  is the mean-5xial velocity a t  
the same downstream position. In  order to express V in terms of (rel): we must use 
t$e following crude similarity theory. If is the local half-width of the jet, then 
[, - U,/B is the order of magnitude of the vortici$y near the jet’s edge, 6 is the 
radius of a large-scale local eddy, and f - f i 2 g l  is its circulation. Therefore 
(ftl) i  - BCl - U,, and V - 0.03(fc1)i is the (crude) renormalization of the experi- 
mental data into our units. Since (7.1) is significantly larger than this 7, and since 
stochastic effects like intermittency have not been included, we conclude that the 
two-dimensional model is capable of accounting for the much more complicated 
effect in a turbulent flow. 

The entrainment in figures 2 4  could also be regarded as the merger of a small 
eddy, having large vorticity, with a large (infinite-radius) eddy having smaller 
vorticity and vanishing velocity a t  its outer edge. The notable difference, compared 
to  the classical problem of the merger of equal vortices, is that a large amount of 
ambient (6 = 0) fluid is incorporated into the big eddy along with the small one. 

A countergradient momentum flux (6.3), produced by non-locally generated 
eddies, may be especially significant in oceanic jets where the energy flux as well as 
the mass flux increases downstream. But the model must obviously be generalized to 
include the baroclinic effects in this case. 

I would like to acknowledge partial support of this work by the Office of Naval 
Research, and to  thank Mr J. Bidlot (FSU) for his independent calculation of the 
spatially periodic cases mentioned in the text and the Appendix. 

Appendix. Checking the numerical results for D = 00 

Consider first the problem (Stern 1985) of the free propagation of infinitesimal 
disturbances [L(x , t ) ]  on the 1 = 1 interface when the 1 = 2 eddy is absent. An 
elementary calculation shows that an Z(k, t )  exp ( -ikx) disturbance of wavenumber 
k > 0 propagates downstream with a frequency equal to half the reciprocal vorticity 
under 1 = 1 ,  i.e. the linear wave equation is 

CILlat = @( k, t ) .  (A 1) 

Let us solve the evolution problem for 

L(x,t) = Re Z(k,t)e-ik2dk, 1: 
when the initial value is such that 

L(k,O)  = e-ka-ee-kbb, 

in which case E(0,O) = 0. Thus the area bounded by L(x ,O)  in -00 < x < 00 
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vanishes, and the net vorticity anomaly also vanishes. The same is true for the time- 
dependent solution 

Note that in the limit when b +  co, with a = O(1) and x = 0(1), the last term is 
negligible, so that the near-field solution is 

(a - ix) 
L(x, t )  = Re eitl2 ~ 

a2 + x2 
and this curve bounds an area (8,) which varies with time. The far-field solution (the 
one involving b) is only necessary to account for global mass conservation. This 
example illustrates why S, is not conserved in the weak-interaction calculation (table 
3),  wherein the far-field velocity gives rise to interfacial ( I  = 1) disturbances which 
propagate (to x = + co) outside the truncated domain, producing uncompensated 
vorticity anomalies in the near field. 

Next we modify this example by inserting an eddy of vorticity c2+0 and unit 
radius (this is the lengthscale here), with the centroid at  z = 0, y = R = 0 ( 1 ) ,  and we 
look for a linearized solution propagating steadily with speed c + 0. To first order, the 
non-circular distortions of 1 = 2 may be neglected in computing the infinitesimal L,. 
since aL,/at and ui3LJax are quadratically small, the velocity induced by the eddy 
on y = 0 (i.e. on L,(x) + 0) or 

00 l2 = +c2 Re i Jo e-ikz e-kR d k  
2(x2+R2) 

must be equal and opposite to the velocity V,(z) induced at the same point by the 
L,(x) vortex anomalies. The Fourier transform of this V,(x) is merely equal to the 
right-hand side of (A l), and by equating velocities we get 

V,(x) = 4 Re 1; dk e-ikx x(k) = -;Re 

Therefore E ( k )  = - c2 e-kR, and 

5 2  8 m 
L(z) = - f Re lo dk e-ikx e-Rk = - - 

x2+R2' 

From this the small-vortex propagating speed 

c = C2I4R 
is easily computed by summing the horizontal velocities induced at x = 0, r = R by 
all the vorticity anomalies bounded by L. 

The result of this steady linear theory for C2 = 0.01 and R = 1.5 was compared with 
corresponding results ((2.3), (2.4~)) obtained from the numerical program ($3).  
Although the truncated domain - 10 < x < 10 resulted in a 10 YO reduction of 8, at 
t = 0, the initial values of c, u, (near x = 0) were all in very good agreement with the 
linear theory. For all z at t = 8.25 there was a departure of v1 x - 1.2 x from the 
steady theoretical value (zero), and at t = 12.5 the value of c had decreased by 12 %. 
When the length of the x-domain was doubled, the systematic v-error at t = 8.5 was 
reduced to -0.4 x lo-*, and max lull and max ILI deviated by only 3% from the 
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linear theory. At t = 12.5 the departure of c was reduced to 5% but part of this 
should be attributed to the analytic theory, since i t  neglects time-dependent effects 
appearing a t  small finite amplitude. 

A further test of the nonlinear numerical calculation was obtained (as mentioned 
in the text) by comparing the c2 = 1.5 (table 3) calculation for an isolated eddy with 
one using a periodic array of eddies. 
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